Multiple Reject Thresholds for Improving Classification Reliability
نویسندگان
چکیده
In pattern recognition systems, Chow’s rule is commonly used to reach a trade-off between error and reject probabilities. In this paper, we investigate the effects of estimate errors affecting the a posteriori probabilities on the optimality of Chow’s rule. We show that the optimal error-reject tradeoff is not provided by Chow’s rule if the a posteriori probabilities are affected by errors. The use of multiple reject thresholds related to the data classes is then proposed. The authors have proved in another work that the reject rule based on such thresholds provides a better error-reject trade-off than in Chow’s rule. Reported results on the classification of multisensor remote-sensing images point out the advantages of the proposed reject rule.
منابع مشابه
Classification with reject option in text categorisation systems
The aim of this paper is to evaluate the potential usefulness of the reject option for text categorisation (TC) tasks. The reject option is a technique used in statistical pattern recognition for improving classification reliability. Our work is motivated by the fact that, although the reject option proved to be useful in several pattern recognition problems, it has not yet been considered for ...
متن کاملTo reject or not to reject: that is the question-an answer in case of neural classifiers
In this paper a method defining a reject option applicable to a given 0-reject classifier is proposed. The reject option is based on an estimate of the classification reliability, measured by a reliability evaluator . Trivially, once a reject threshold has been fixed, a sample is rejected if the corresponding value of is below . Obviously, as represents the least tolerable classification reliab...
متن کاملReject option with multiple thresholds
can be obtained using the so-called “reject” option. Namely, the patterns that are the most likely to be misclassified are rejected (i.e., they are not classified); they are then handled by more sophisticated procedures (e.g., a manual classification is performed). However, handling high reject rates is usually too time-consuming for application purposes. Therefore, a trade-off between error an...
متن کاملOptimum Reject Options for Prototype-based Classification
We analyse optimum reject strategies for prototype-based classifiers and real-valued rejection measures, using the distance of a data point to the closest prototype or probabilistic counterparts. We compare reject schemes with global thresholds, and local thresholds for the Voronoi cells of the classifier. For the latter, we develop a polynomial-time algorithm to compute optimum thresholds base...
متن کاملUsing DEA for Classification in Credit Scoring
Credit scoring is a kind of binary classification problem that contains important information for manager to make a decision in particularly in banking authorities. Obtained scores provide a practical credit decision for a loan officer to classify clients to reject or accept for payment loan. For this sake, in this paper a data envelopment analysis- discriminant analysis (DEA-DA) approach is us...
متن کامل